Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 263(Pt 1): 130073, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342268

RESUMO

Chronic wounds suffer from impaired healing due to microbial attack and poor vascular growth. Thermoresponsive hydrogels gained attention in wound dressing owing to their gelation at physiological temperature enabling them to take the shape of asymmetric wounds. The present study delineates the development of thermoresponsive hydrogel (MCK), from hair-derived keratin (K) and methylcellulose (MC) in the presence of sodium sulfate. The gelation temperature (Tg) of this hydrogel is in the range of 30 °C to 33 °C. Protein-polymer interaction leading to thermoreversible sol-gel transition involved in MCK blends has been analyzed and confirmed by FTIR, XRD, and thermal studies. Keratin, has introduced antioxidant properties to the hydrogel imparted cytocompatibility towards human dermal fibroblasts (HDFs) as evidenced by both MTT and live dead assays. In vitro wound healing assessment has been shown by enhanced migration of HDFs in the presence of MCK hydrogel compared to the control. Also, CAM assay and CD31 expression by the Wistar rat model has shown increased blood vessel branching after the implantation of MCK hydrogel. Further, in vivo study, demonstrated MCK efficacy of hydrogel in accelerating full-thickness wounds with minimal scarring in Wistar rats, re-epithelialization, and reinstatement of the epidermal-dermal junction thereby exhibiting clinical relevance for chronic wounds.


Assuntos
Queratinas , Reepitelização , Ratos , Animais , Humanos , Queratinas/farmacologia , Hidrogéis/farmacologia , Metilcelulose , Ratos Wistar , Cicatrização
2.
Biomater Sci ; 11(14): 4789-4821, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37255413

RESUMO

The human placenta and umbilical cord, natural birth biowaste, are a housing unit for numerous bioactive macromolecules, growth factors, collagen and GAGs, with an array of high-quality stem cells. MSCs isolated from the human placenta and umbilical cord are utilized in both research and medical applications due to their sustainable sourcing, high viability, multipotent lineage and potency. They present an unprecedented opportunity in the tissue engineering, biomedical and biotechnology fields with minimal ethical constraints and nominal cost. Considering the world population and daily birth rates, with appropriate utilization and management, they could resolve the MSC shortage in the global stem cell therapy market and present biomedical waste disposal. A considerable number of clinical trials are presently underway where placenta-derived stem cells have been administered for different pathologies. Since the umbilical cord and placenta's primary function is to sustain the fetus until delivery, it has an ample supply of nutrients, proteins and essential factors necessary to assist cell viability and proliferation. Present research and medical applications include the fabrication of ECM-based nanofibers, disease models, micro-tissue, hybrid models and artificial implants. Future utilization of birthing biomedical waste in medical engineering and research will provide a rich and sustainable source of stem cells and extracellular matrix for enhanced biocompatibility and regeneration.


Assuntos
Células-Tronco Mesenquimais , Medicina Regenerativa , Humanos , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical , Engenharia Tecidual , Feto , Diferenciação Celular
3.
J Biomater Appl ; 37(9): 1509-1528, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37069479

RESUMO

Chronic wounds are the outcome of an imbalanced inflammatory response caused by sustenance of immune microenvironment. In this context, tissue engineered graft played great role in healing wounds but faced difficulty in scar remodelling, immune rejection and poor vascularization. All the limitations faced are somewhere linked with the immune cells involved in healing. In this consideration, immunomodulatory biomaterials bridge a large gap with the delivery of modulating factors for triggering key inflammatory cells responsible towards interplay in the wound micro-environment. Inherent physico-chemical properties of biomaterials substantially determine the nature of cell-materials interaction thereby facilitating differential cytokine gradient involved in activation or suppression of inflammatory signalling pathways, and followed by surface marker expression. This review aims to systematically describe the interplay of immune cells involved in different phases in the wound microenvironment and biomaterials. Additionally, it also focuses on modulating innate immune cell responses in the context of triggering the halted phase of the wound healing, i.e., inflammatory phase. The various strategies are highlighted for modulation of wound microenvironment towards wound regeneration including stem cells, cytokines, growth factors, vitamins, and anti-inflammatory agents to induce interactive ability of biomaterials with immune cells. The last section focuses on prospective approaches and current potential strategies for wound regeneration. This includes the development of different models to bridge the gap between mouse models and human patients. Emerging new tools to study inflammatory response owing to biomaterials and novel strategies for modulation of monocyte and macrophage behaviour in the wound environment are also discussed.


Assuntos
Materiais Biocompatíveis , Interação Gene-Ambiente , Animais , Camundongos , Humanos , Materiais Biocompatíveis/metabolismo , Macrófagos/metabolismo , Cicatrização , Citocinas/metabolismo , Imunomodulação
4.
Methods Mol Biol ; 2394: 31-46, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35094320

RESUMO

By combining novel micro-scale manipulation cantilevers with commercially available, widely used 3D light microscopy, we were able to develop a new method of 3D elastography specialized for the analysis of 3D microtumors. Existing mechanical characterization methods are available for the study of single cells, using forces in the range of sub pN to a few hundred nN, or of larger tissues, with forces greater than 1 mN. Our method supports the mechanical analysis of micro- to meso-scale 3D tissues, such as multicellular spheroids (200-300 µm diameter), by applying forces in the range of sub-hundred nN to sub-mN, while also maintaining a spatial resolution of elasticity measurement as small as 20-30 µm. We use a differential interference contrast (DIC)/confocal microscope to obtain a 4D (x, y, z, and indentation steps) image sequence, which is then analyzed using our custom 3D pattern-tracking MATLAB program. With this method, we have been able to show structural and spatial heterogeneity among single cells and surrounding regions in tumor spheroids, and between different cell types in tumor-fibroblast co-cultured spheroids. Our method has the potential to both bridge the gap between in vitro monolayer culture systems and in vivo animal studies and add a mechanical component to existing biological assays.


Assuntos
Neoplasias , Esferoides Celulares , Animais , Técnicas de Cocultura , Fibroblastos
5.
J Biomed Opt ; 26(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33768741

RESUMO

SIGNIFICANCE: Fourier ptychography (FP) is a computational imaging approach that achieves high-resolution reconstruction. Inspired by neural networks, many deep-learning-based methods are proposed to solve FP problems. However, the performance of FP still suffers from optical aberration, which needs to be considered. AIM: We present a neural network model for FP reconstructions that can make proper estimation toward aberration and achieve artifact-free reconstruction. APPROACH: Inspired by the iterative reconstruction of FP, we design a neural network model that mimics the forward imaging process of FP via TensorFlow. The sample and aberration are considered as learnable weights and optimized through back-propagation. Especially, we employ the Zernike terms instead of aberration to decrease the optimization freedom of pupil recovery and perform a high-accuracy estimation. Owing to the auto-differentiation capabilities of the neural network, we additionally utilize total variation regularization to improve the visual quality. RESULTS: We validate the performance of the reported method via both simulation and experiment. Our method exhibits higher robustness against sophisticated optical aberrations and achieves better image quality by reducing artifacts. CONCLUSIONS: The forward neural network model can jointly recover the high-resolution sample and optical aberration in iterative FP reconstruction. We hope our method that can provide a neural-network perspective to solve iterative-based coherent or incoherent imaging problems.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Artefatos , Pupila , Tomografia Computadorizada por Raios X
6.
Opt Express ; 27(16): 23173-23185, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510600

RESUMO

Two-dimensional phase unwrapping algorithms are widely used in optical metrology and measurements. The high noise from interference measurements, however, often leads to the failure of conventional phase unwrapping algorithms. In this paper, we propose a deep convolutional neural network (DCNN) based method to perform rapid and robust two-dimensional phase unwrapping. In our approach, we employ a DCNN architecture, DeepLabV3+, with noise suppression and strong feature representation capabilities. The employed DCNN is first used to perform semantic segmentation to obtain the segmentation result of the wrapped phase map. We then combine the wrapped phase map with the segmentation result to generate the unwrapped phase. We benchmarked our results by comparing them with well-established methods. The reported approach out-performed the conventional path-dependent and path-independent algorithms. We also tested the robustness of the reported approach using interference measurements from optical metrology setups. Our results, again, clearly out-performed the conventional phase unwrap algorithms. The reported approach may find applications in optical metrology and microscopy imaging.

7.
Commun Biol ; 2: 146, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31044171

RESUMO

Collagen II (COLII), the most abundant protein in vertebrates, helps maintain the structural and functional integrity of cartilage. Delivery of COLII from animal sources could improve cartilage regeneration therapies. Here we show that COLII can be purified from the Capra ear cartilage, a commonly available bio-waste product, with a high yield. MALDI-MS/MS analysis evidenced post-translational modifications of the signature triplet, Glycine-Proline-Hydroxyproline (G-P-Hyp), in alpha chain of isolated COLII (COLIIA1). Additionally, thirty-two peptides containing 59 Hyp residues and a few G-X-Y triplets with positional alterations of Hyp in COLIIA1 are also identified. Furthermore, we show that an injectable hydrogel formulation containing the isolated COLII facilitates chondrogenic differentiation towards cartilage regeneration. These findings show that COLII can be isolated from Capra ear cartilage and that positional alteration of Hyp in its structural motif, as detected by newly developed mass spectrometric method, might be an early marker of cartilage disorder.


Assuntos
Colágeno Tipo II/química , Colágeno Tipo II/isolamento & purificação , Cartilagem da Orelha/química , Cabras/metabolismo , Hidroxiprolina/análise , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Doenças das Cartilagens/metabolismo , Colágeno Tipo II/farmacologia , Glicina/química , Cabras/anatomia & histologia , Hidrogéis/farmacologia , Hidroxiprolina/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Peptídeos/química , Prolina/química , Conformação Proteica , Processamento de Proteína Pós-Traducional
8.
Sensors (Basel) ; 19(7)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925721

RESUMO

We have developed a force sensing system to continuously evaluate the mechanical elasticity of micrometer-scale (a few hundred micrometers to a millimeter) live tissues. The sensing is achieved by measuring the deflection of force sensitive cantilevers through microscopic image analysis, which does not require electrical strain gauges. Cantilevers made of biocompatible polydimethylsiloxane (PDMS) were actuated by a piezoelectric actuator and functioned as a pair of chopsticks to measure the stiffness of the specimen. The dimensions of the cantilevers were easily adjusted to match the size, range, and stiffness of the zebrafish samples. In this paper, we demonstrated the versatility of this technique by measuring the mechanical elasticity of zebrafish embryos at different stages of development. The stiffness of zebrafish embryos was measured once per hour for 9 h. From the experimental results, we successfully quantified the stiffness change of zebrafish embryos during embryonic development.


Assuntos
Materiais Biocompatíveis/química , Módulo de Elasticidade , Embrião não Mamífero/fisiologia , Peixe-Zebra/crescimento & desenvolvimento , Animais , Dimetilpolisiloxanos/química , Desenvolvimento Embrionário , Análise de Elementos Finitos , Pinças Ópticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...